Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.179
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38583741

RESUMO

The white shrimp Penaeus (Litopenaeus) vannamei is the most cultivated shrimp worldwide. Compared to other shrimp species, it has higher resistance to adverse conditions. During hypoxia, the shrimp reduces oxygen consumption and adjusts energy metabolism via anaerobic glycolysis, among other strategies. Hexokinase (HK) is the first enzyme of glycolysis and a key regulation point. In mammals and other vertebrates, there are several tissue-specific HK isoforms with differences in expression and enzyme activity. In contrast, crustacean HKs have been relatively little studied. We studied the P. vannamei HK isoforms during hypoxia and reoxygenation. We cloned two HK1 sequences named HK1-long (1455 bp) and HK1-short (1302 bp), and one HK2 (1344 bp). In normoxia, total HK1 expression is higher in hepatopancreas, while HK2 is higher in gills. Severe hypoxia (1 mg/L of DO) after 12 h exposure and 1 h of reoxygenation increased HK1 expression in both organs, but HK2 expression changed differentially. In hepatopancreas, HK2 expression increased in 6 and 12 h of hypoxia but diminished to normoxia levels after reoxygenation. In gills, HK2 expression decreased after 12 h of hypoxia. HK activity increased in hepatopancreas after 12 h hypoxia, opposite to gills. These results indicate that shrimp HK isoforms respond to hypoxia and reoxygenation in a tissue-specific manner. Intracellular glucose levels did not change in any case, showing the shrimp ability to maintain glucose homeostasis during hypoxia.


Assuntos
Penaeidae , Animais , Penaeidae/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Sequência de Aminoácidos , Hipóxia/metabolismo , Oxigênio/metabolismo , Isoformas de Proteínas/metabolismo , Glucose/metabolismo , Hepatopâncreas/metabolismo , Mamíferos/metabolismo
2.
FASEB J ; 38(6): e23556, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38498348

RESUMO

PARP-1 over-activation results in cell death via excessive PAR generation in different cell types, including neurons following brain ischemia. Glycolysis, mitochondrial function, and redox balance are key cellular processes altered in brain ischemia. Studies show that PAR generated after PARP-1 over-activation can bind hexokinase-1 (HK-1) and result in glycolytic defects and subsequent mitochondrial dysfunction. HK-1 is the neuronal hexokinase and catalyzes the first reaction of glycolysis, converting glucose to glucose-6-phosphate (G6P), a common substrate for glycolysis, and the pentose phosphate pathway (PPP). PPP is critical in maintaining NADPH and GSH levels via G6P dehydrogenase activity. Therefore, defects in HK-1 will not only decrease cellular bioenergetics but will also cause redox imbalance due to the depletion of GSH. In brain ischemia, whether PAR-mediated inhibition of HK-1 results in bioenergetics defects and redox imbalance is not known. We used oxygen-glucose deprivation (OGD) in mouse cortical neurons to mimic brain ischemia in neuronal cultures and observed that PARP-1 activation via PAR formation alters glycolysis, mitochondrial function, and redox homeostasis in neurons. We used pharmacological inhibition of PARP-1 and adenoviral-mediated overexpression of wild-type HK-1 (wtHK-1) and PAR-binding mutant HK-1 (pbmHK-1). Our data show that PAR inhibition or overexpression of HK-1 significantly improves glycolysis, mitochondrial function, redox homeostasis, and cell survival in mouse cortical neurons exposed to OGD. These results suggest that PAR binding and inhibition of HK-1 during OGD drive bioenergetic defects in neurons due to inhibition of glycolysis and impairment of mitochondrial function.


Assuntos
Isquemia Encefálica , Oxigênio , Camundongos , Animais , Oxigênio/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Glucose/metabolismo , Isquemia Encefálica/metabolismo , Glicólise , Neurônios/metabolismo , Oxirredução
3.
Exp Mol Med ; 56(3): 747-759, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531963

RESUMO

Intervertebral disc degeneration (IDD) is an important pathological basis for degenerative spinal diseases and is involved in mitophagy dysfunction. However, the molecular mechanisms underlying mitophagy regulation in IDD remain unclear. This study aimed to clarify the role of DJ-1 in regulating mitophagy during IDD pathogenesis. Here, we showed that the mitochondrial localization of DJ-1 in nucleus pulposus cells (NPCs) first increased and then decreased in response to oxidative stress. Subsequently, loss- and gain-of-function experiments revealed that overexpression of DJ-1 in NPCs inhibited oxidative stress-induced mitochondrial dysfunction and mitochondria-dependent apoptosis, whereas knockdown of DJ-1 had the opposite effect. Mechanistically, mitochondrial translocation of DJ-1 promoted the recruitment of hexokinase 2 (HK2) to damaged mitochondria by activating Akt and subsequently Parkin-dependent mitophagy to inhibit oxidative stress-induced apoptosis in NPCs. However, silencing Parkin, reducing mitochondrial recruitment of HK2, or inhibiting Akt activation suppressed DJ-1-mediated mitophagy. Furthermore, overexpression of DJ-1 ameliorated IDD in rats through HK2-mediated mitophagy. Taken together, these findings indicate that DJ-1 promotes HK2-mediated mitophagy under oxidative stress conditions to inhibit mitochondria-dependent apoptosis in NPCs and could be a therapeutic target for IDD.


Assuntos
Degeneração do Disco Intervertebral , Mitofagia , Proteína Desglicase DJ-1 , Animais , Ratos , Apoptose , Hexoquinase/genética , Hexoquinase/farmacologia , Hexoquinase/uso terapêutico , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Mitofagia/genética , Mitofagia/fisiologia , Proteínas Proto-Oncogênicas c-akt , Ubiquitina-Proteína Ligases/genética , Proteína Desglicase DJ-1/metabolismo
4.
PLoS One ; 19(3): e0300150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457438

RESUMO

During hypoxia accumulation of lactate may be a key factor in acidosis-induced tissue damage. Binding of hexokinase (HK) to the outer membrane of mitochondria may have a protective effect under these conditions. We have investigated the regulation of lactate metabolism by hexokinases (HKs), using HEK293 cells in which the endogenous hexokinases have been knocked down to enable overexpression of wild type and mutant HKs. To assess the real-time changes in intracellular lactate levels the cells were also transfected with a lactate specific FRET probe. In the HKI/HKII double knockdown HEK cells, addition of extracellular pyruvate caused a large and sustained decrease in lactate. Upon inhibition of the mitochondrial electron transfer chain by NaCN this effect was reversed as a rapid increase in lactate developed which was followed by a slow and sustained increase in the continued presence of the inhibitor. Incubation of the HKI/HKII double knockdown HEK cells with the inhibitor of the malic enzyme, ME1*, blocked the delayed accumulation of lactate evoked by NaCN. With replacement by overexpression of HKI or HKII the accumulation of intracellular lactate evoked by NaCN was prevented. Blockage of the pentose phosphate pathway with the inhibitor 6-aminonicotinamide (6-AN) abolished the protective effect of HK expression, with NaCN causing again a sustained increase in lactate. The effect of HK was dependent on HK's catalytic activity and interaction with the mitochondrial outer membrane (MOM). Based on these data we propose that transformation of glucose into G6P by HK activates the pentose phosphate pathway which increases the production of NADPH, which then blocks the activity of the malic enzyme to transform malate into pyruvate and lactate.


Assuntos
Hexoquinase , Ácido Láctico , Humanos , Hexoquinase/genética , Hexoquinase/metabolismo , Ácido Láctico/metabolismo , Células HEK293 , Mitocôndrias/metabolismo , Piruvatos/metabolismo
5.
Cytokine ; 176: 156535, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38325141

RESUMO

Increasing evidence suggests the oncogenic role of missense mutation (AKT1-E17K) of AKT1 gene in meningiomas. Upon investigating the connection between the pro-tumorigenic role of AKT1-E17K and cellular metabolic adaptations, elevated levels of glycolytic enzyme hexokinase 2 (HK2) was observed in meningioma patients with AKT1-E17K compared to patients harboring wild-type AKT1. In vitro experiments also suggested higher HK2 levels and its activity in AKT1-E17K cells. Treatment with the conventional drug of choice AZD5363 (a pan AKT inhibitor) enhanced cell death and diminished HK2 levels in AKT1 mutants. Given the role of AKT phosphorylation in eliciting inflammatory responses, we observed increased levels of inflammatory mediators (IL-1ß, IL6, IL8, and TLR4) in AKT1-E17K cells compared to AKT1-WT cells. Treatment with AKT or HK2 inhibitors dampened the heightened levels of inflammatory markers in AKT1-E17K cells. As AKT and HK2 regulates redox homeostasis, diminished ROS generation concomitant with increased levels of NF-E2- related factor 2 (Nrf2) and superoxide dismutase 1 (SOD1) were observed in AKT1-E17K cells. Increased sensitivity of AKT1-E17K cells to AZD5363 in the presence of HK2 inhibitor Lonidamine was reversed upon treatment with ROS inhibitor NAC. By affecting metabolism, inflammation, and redox homeostasis AKT1-E17K confers a survival advantage in meningioma cells. Our findings suggest that targeting AKT-HK2 cross-talk to induce ROS-dependent cell death could be exploited as novel therapeutic approach in meningiomas.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Mutação com Ganho de Função , Hexoquinase/genética , Hexoquinase/metabolismo , Neoplasias Meníngeas/genética , Meningioma/genética , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio
6.
Environ Toxicol ; 39(5): 2667-2680, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38224486

RESUMO

BACKGROUND: Hexokinase (HK) is the first rate-limiting enzyme of glycolysis, which can convert glucose to glucose-6-phosphate. There are several subtypes of HK, including HK2, which is highly expressed in a variety of different tumors and is closely associated with survival. METHODS: Non-small cell lung cancer (NSCLC) A549 cells with stable overexpression and knockdown of HK2 were obtained by lentivirus transfection. The effects of overexpression and knockdown of HK2 on proliferation, migration, invasion, and glycolytic activity of A549 cells were investigated. The effects on apoptosis were also analyzed using western blot and flow cytometry. In addition, the mitochondria and cytoplasm were separated and the expression of apoptotic proteins was detected by western blot respectively. RESULTS: Upregulation of HK2 could promote glycolysis, cell proliferation, migration, and invasion, which would be inhibited through the knockdown of HK2. HK2 overexpression contributed to cisplatin resistance, whereas HK2 knockdown enhanced cisplatin-induced apoptosis in A549 cells. CONCLUSIONS: Overexpression of HK2 can promote the proliferation, migration, invasion, and drug resistance of A549 cells by enhancing aerobic glycolysis and inhibiting apoptosis. Reducing HK2 expression or inhibiting HK2 activity can inhibit glycolysis and induce apoptosis in A549 cells, which is expected to be a potential treatment method for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Cisplatino/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Hexoquinase/genética , Hexoquinase/metabolismo , Pulmão/patologia , Linhagem Celular Tumoral , Proliferação de Células , Apoptose
7.
J Biol Chem ; 300(3): 105684, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272231

RESUMO

Eukaryotic elongation factor 1A1 (EEF1A1) is canonically involved in protein synthesis but also has noncanonical functions in diverse cellular processes. Previously, we identified EEF1A1 as a mediator of lipotoxicity and demonstrated that chemical inhibition of EEF1A1 activity reduced mouse liver lipid accumulation. These findings suggested a link between EEF1A1 and metabolism. Therefore, we investigated its role in regulating metabolic substrate preference. EEF1A1-deficient Chinese hamster ovary (2E2) cells displayed reduced media lactate accumulation. These effects were also observed with EEF1A1 knockdown in human hepatocyte-like HepG2 cells and in WT Chinese hamster ovary and HepG2 cells treated with selective EEF1A inhibitors, didemnin B, or plitidepsin. Extracellular flux analyses revealed decreased glycolytic ATP production and increased mitochondrial-to-glycolytic ATP production ratio in 2E2 cells, suggesting a more oxidative metabolic phenotype. Correspondingly, fatty acid oxidation was increased in 2E2 cells. Both 2E2 cells and HepG2 cells treated with didemnin B exhibited increased neutral lipid content, which may be required to support elevated oxidative metabolism. RNA-seq revealed a >90-fold downregulation of a rate-limiting glycolytic enzyme, hexokinase 2, which we confirmed through immunoblotting and enzyme activity assays. Pathway enrichment analysis identified downregulations in TNFA signaling via NFKB and MYC targets. Correspondingly, nuclear abundances of RELB and MYC were reduced in 2E2 cells. Thus, EEF1A1 deficiency may perturb glycolysis by limiting NFKB- and MYC-mediated gene expression, leading to decreased hexokinase expression and activity. This is the first evidence of a role for a translation elongation factor, EEF1A1, in regulating metabolic substrate utilization in mammalian cells.


Assuntos
Hexoquinase , Fator 1 de Elongação de Peptídeos , Animais , Cricetinae , Humanos , Trifosfato de Adenosina , Linhagem Celular , Cricetulus , Hexoquinase/genética , Hexoquinase/metabolismo , Lipídeos , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo , Glicólise , Oxirredução , Movimento Celular , Proliferação de Células , Metabolismo dos Lipídeos
8.
Proc Natl Acad Sci U S A ; 121(2): e2306454120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170752

RESUMO

Mitochondrial and lysosomal functions are intimately linked and are critical for cellular homeostasis, as evidenced by the fact that cellular senescence, aging, and multiple prominent diseases are associated with concomitant dysfunction of both organelles. However, it is not well understood how the two important organelles are regulated. Transcription factor EB (TFEB) is the master regulator of lysosomal function and is also implicated in regulating mitochondrial function; however, the mechanism underlying the maintenance of both organelles remains to be fully elucidated. Here, by comprehensive transcriptome analysis and subsequent chromatin immunoprecipitation-qPCR, we identified hexokinase domain containing 1 (HKDC1), which is known to function in the glycolysis pathway as a direct TFEB target. Moreover, HKDC1 was upregulated in both mitochondrial and lysosomal stress in a TFEB-dependent manner, and its function was critical for the maintenance of both organelles under stress conditions. Mechanistically, the TFEB-HKDC1 axis was essential for PINK1 (PTEN-induced kinase 1)/Parkin-dependent mitophagy via its initial step, PINK1 stabilization. In addition, the functions of HKDC1 and voltage-dependent anion channels, with which HKDC1 interacts, were essential for the clearance of damaged lysosomes and maintaining mitochondria-lysosome contact. Interestingly, HKDC1 regulated mitophagy and lysosomal repair independently of its prospective function in glycolysis. Furthermore, loss function of HKDC1 accelerated DNA damage-induced cellular senescence with the accumulation of hyperfused mitochondria and damaged lysosomes. Our results show that HKDC1, a factor downstream of TFEB, maintains both mitochondrial and lysosomal homeostasis, which is critical to prevent cellular senescence.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Hexoquinase , Hexoquinase/genética , Hexoquinase/metabolismo , Estudos Prospectivos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Mitocôndrias/metabolismo , Lisossomos/metabolismo , Proteínas Quinases/metabolismo , Senescência Celular/genética , Homeostase , Autofagia/genética
9.
J Orthop Surg Res ; 19(1): 67, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218855

RESUMO

BACKGROUND: Many studies have confirmed that circular RNAs (circRNAs) mediate the malignant progression of various tumors including osteosarcoma (OS). Our study is to uncover novel molecular mechanisms by which circ_0000376 regulates OS progression. METHODS: The expression of circ_0000376, microRNA (miR)-577, hexokinase 2 (HK2) and lactate dehydrogenase-A (LDHA) was determined by quantitative real-time PCR. OS cell proliferation, apoptosis and invasion were measured using cell counting kit 8 assay, colony formation assay, EdU assay, flow cytometry and transwell assay. Besides, cell glycolysis was assessed by testing glucose consumption, lactate production, and ATP/ADP ratios. Protein expression was examined by western blot analysis. The interaction between miR-577 and circ_0000376 or HK2/LADA was verified by dual-luciferase reporter assay. The role of circ_0000376 on OS tumor growth was explored by constructing mice xenograft models. RESULTS: Circ_0000376 had been found to be upregulated in OS tissues and cells. Functional experiments revealed that circ_0000376 interference hindered OS cell growth, invasion and glycolysis. Circ_0000376 sponged miR-577 to reduce its expression. In rescue experiments, miR-577 inhibitor abolished the regulation of circ_0000376 knockdown on OS cell functions. MiR-577 could target HK2 and LDHA in OS cells. MiR-577 suppressed OS cell growth, invasion and glycolysis, and these effects were reversed by HK2 and LDHA overexpression. Also, HK2 and LDHA expression could be regulated by circ_0000376. In vivo experiments showed that circ_0000376 knockdown inhibited OS tumorigenesis. CONCLUSION: Circ_0000376 contributed to OS growth, invasion and glycolysis depending on the regulation of miR-577/HK2/LDHA axis, providing a potential target for OS treatment.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Humanos , Animais , Camundongos , Hexoquinase/genética , Osteossarcoma/genética , Transdução de Sinais/genética , Proliferação de Células/genética , Glicólise/genética , Neoplasias Ósseas/genética , MicroRNAs/genética , Linhagem Celular Tumoral
10.
Cell Tissue Res ; 395(1): 105-116, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37930472

RESUMO

PDZ and LIM domain protein 1 (PDLIM1) is a cytoskeletal protein and is associated with the malignant pathological features of several tumors. However, the prognostic value of PDLIM1 and the molecular mechanisms by which it is involved in the metabolism and progression in gastric cancer (GC) are still unclear. The GEPIA database was used to predict the expression and prognosis of PDLIM1 in GC. qRT-PCR and western blot assays were applied to detect the mRNA and protein expression in GC tissues and cells. Loss- and gain-of-function experiments were performed to evaluate the biological role of PDLIM1 in GC cells. The Warburg effect was detected by a battery of glycolytic indicators. The interaction of PDLIM1 and hexokinase 2 (HK2) was determined by a co-immunoprecipitation assay. Furthermore, the modulatory effects of PDLIM1 and HK2 on Wnt/ß-catenin signaling were assessed. The results showed that PDLIM1 expression was upregulated in GC tissues and cells and was associated with a poor prognosis for GC patients. PDLIM1 inhibition reduced GC cell proliferation, migration and invasion and promoted cell apoptosis. In the glucose deprivation (GLU-D) condition, the PDLIM1 level was reduced and PDLIM1 overexpression led to an increase in glycolysis. Besides, mechanistic investigation showed that PDLIM1 interacted with HK2 to mediate biological behaviors and the glycolysis of GC through Wnt/ß-catenin signaling under glucose deprivation. In conclusion, PDLIM1 interacts with HK2 to promote gastric cancer progression by enhancing the Warburg effect via Wnt/ß-catenin signaling.


Assuntos
Neoplasias Gástricas , Humanos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glucose , Hexoquinase/genética , Hexoquinase/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Via de Sinalização Wnt/genética
11.
Mol Plant Microbe Interact ; 37(1): 25-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37717227

RESUMO

The potato cyst nematode (Globodera rostochiensis) is an obligate root pathogen of potatoes. G. rostochiensis encodes several highly expanded effector gene families, including the Gr4D06 family; however, little is known about the function of this effector family. We cloned four 29D09 genes from G. rostochiensis (named Gr29D09v1/v2/v3/v4) that share high sequence similarity and are homologous to the Hg29D09 and Hg4D06 effector genes from the soybean cyst nematode (Heterodera glycines). Phylogenetic analysis revealed that Gr29D09 genes belong to a subgroup of the Gr4D06 family. We showed that Gr29D09 genes are expressed exclusively within the nematode's dorsal gland cell and are dramatically upregulated in parasitic stages, indicating involvement of Gr29D09 effectors in nematode parasitism. Transgenic potato lines overexpressing Gr29D09 variants showed increased susceptibility to G. rostochiensis. Transient expression assays in Nicotiana benthamiana demonstrated that Gr29D09v3 could suppress reactive oxygen species (ROS) production and defense gene expression induced by flg22 and cell death mediated by immune receptors. These results suggest a critical role of Gr29D09 effectors in defense suppression. The use of affinity purification coupled with nanoliquid chromatography-tandem mass spectrometry identified potato hexokinase 1 (StHXK1) as a candidate target of Gr29D09. The Gr29D09-StHXK1 interaction was further confirmed using in planta protein-protein interaction assays. Plant HXKs have been implicated in defense regulation against pathogen infection. Interestingly, we found that StHXK1 could enhance flg22-induced ROS production, consistent with a positive role of plant HXKs in defense. Altogether, our results suggest that targeting StHXK1 by Gr29D09 effectors may impair the positive function of StHXK1 in plant immunity, thereby aiding nematode parasitism. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Nematoides , Solanum tuberosum , Tylenchoidea , Animais , Hexoquinase/genética , Espécies Reativas de Oxigênio , Filogenia , Proteínas/genética , Tylenchoidea/fisiologia
12.
Plant Physiol Biochem ; 205: 108160, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944243

RESUMO

Hexokinase is considered to be the key molecule in sugar signaling and metabolism. Here, we reported that silencing SlHXK1 resulted in a decrease in flower number, increased rate of flower dropping, abnormal thickening of the anther wall, and reduced pollen and seed viability. An anatomical analysis revealed the loss of small cells and abnormal thickening of anther walls in SlHXK1-RNAi lines. Treatment with auxin and 1-methylcyclopropene inhibited flower dropping from the pedicel abscission zone. qRT-PCR analysis revealed that the effect of SlHXK1 on abscission was associated with the expression levels of genes related to key meristem, auxin, ethylene, cell wall metabolism and programmed cell death. Pollen germination and pollen staining experiments showed that pollen viability was significantly reduced in the SlHXK1-RNAi lines. Physiological and biochemical analyses showed that hexokinase activity and starch content were markedly decreased in the transgenic lines. The expression of genes related to tomato pollen development was also suppressed in the transgenic lines. Although the RNAi lines eventually produced some viable seeds, the yield and quality of the seeds was lower than that of wild-type plants. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that SlHXK1 interacted with SlKINγ. Furthermore, SlPIF4 inhibited the transcriptional expression of SlHXK1. In conclusion, our results demonstrate that SlHXK1 may play important roles in pollen, anther, seed and the pedicel abscission zone by affecting starch accumulation or cell wall synthesis, as well as by regulating the number of the transcripts of genes that are involved in auxin, ethylene and cell wall degradation.


Assuntos
Frutas , Solanum lycopersicum , Frutas/genética , Frutas/metabolismo , Hexoquinase/genética , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Sementes/genética , Sementes/metabolismo , Amido/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/metabolismo
13.
Ann Clin Lab Sci ; 53(5): 726-737, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37945018

RESUMO

OBJECTIVE: Gastric cancer (GC) has become a significant contributor globally to cancer-related mortalities. Accordingly, there is a critical need to identify a new therapeutic target for GC. Recently, the hexokinase domain containing 1 (HKDC1), an oncogenic factor, has been recognized in various cancers. Nevertheless, the role of HKDC1 in GC still needs to be explored. This study is aimed to investigate the role of HKDC1 in GC. METHODS: Initially, the HKDC1 expression in GC tissue samples and cell lines was analyzed using RT-qPCR, exploring its correlation with overall patient survival. Further, short hairpin RNA (shRNA) technology was employed to establish HKDC1 knockdown in GC cell lines and assess the impact of HKDC1 deficiency on tumor growth in vitro and in vivo. RESULTS: RT-qPCR results revealed overexpression of HKDC1 in GC tissue samples and cell lines, which could be correlated to shorter patient survival. HKDC1 knockdown led to decreased viability and colony formation ability of GC cells. Moreover, the transwell assay demonstrated that downregulating HKDC1 significantly suppressed the migration and invasion abilities of GC cells. Eventually, the xenograft tumor model derived from HKDC1 knockdown GC cells in mice exhibited reduced tumor size and deprived Ki67 expression, indicating inhibited tumor growth. CONCLUSION: The study provided evidence of HKDC1 dysregulation in GC tissues, suggesting its potential as a promising novel target for GC treatment.


Assuntos
Neoplasias Gástricas , Animais , Humanos , Camundongos , Biomarcadores , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Hexoquinase/genética , Hexoquinase/metabolismo , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
14.
BMC Cancer ; 23(1): 1148, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007466

RESUMO

BACKGROUND: Neuroblastoma (NB), the most common extracranial solid malignancy in children, carries a poor prognosis in high-risk disease, thus requiring novel therapeutic approaches. Survivin is overexpressed in NB, has pro-mitotic and anti-apoptotic functions, and impacts on oxidative phosphorylation (OXPHOS) and aerobic glycolysis. The subcellular localization and hence function of survivin is directed by the GTPase Ran. AIM: To determine efficacy and modes of action of the survivin-Ran inhibitor LLP-3 as a potential novel therapy of NB. METHODS: Survivin and Ran mRNA expression in NB tumors was correlated to patient survival. Response to LLP-3 in NB cell lines was determined by assays for viability, proliferation, apoptosis, clonogenicity and anchorage-independent growth. Interaction of survivin and Ran was assessed by proximity-linked ligation assay and their subcellular distribution by confocal immunofluorescence microscopy. Expression of survivin, Ran and proteins important for OXPHOS and glycolysis was determined by Western blot, hexokinase activity by enzymatic assay, interaction of survivin with HIF-1α by co-IP, and OXPHOS and glycolysis by extracellular flux analyzer. RESULTS: High mRNA expression of survivin and Ran is correlated with poor patient survival. LLP-3 decreases viability, induces apoptosis, and inhibits clonogenic and anchorage-independent growth in NB cell lines, including those with MYCN amplification, and mutations of p53 and ALK. LLP-3 inhibits interaction of survivin with Ran, decreasing their concentration both in the cytoplasm and the nucleus. LLP-3 impairs flexibility of energy metabolism by inhibiting both OXPHOS and glycolysis. Metabolic inhibition is associated with mitochondrial dysfunction and attenuated hexokinase activity but is independent of HIF-1α. CONCLUSION: LLP-3 attenuates interaction and concentration of survivin and Ran in NB cells. It controls NB cells with diverse genetic alterations, associated with inhibition of OXPHOS, aerobic glycolysis, mitochondrial function and HK activity. Thus, LLP-3 warrants further studies as a novel drug against NB.


Assuntos
Neuroblastoma , Fosforilação Oxidativa , Criança , Humanos , Survivina/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Linhagem Celular Tumoral , Apoptose/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Glicólise , RNA Mensageiro/metabolismo , Proliferação de Células
15.
Biomolecules ; 13(10)2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37892195

RESUMO

tRNA-derived small RNAs (tDRs) are dysregulated in several diseases, including pancreatic cancer (PC). However, only a limited number of tDRs involved in PC progression are known. Herein, a novel tDR, 5'-tRF-19-Q1Q89PJZ (tRF-19-Q1Q89PJZ), was verified in PC plasma using RNA and Sanger sequencing. tRF-19-Q1Q89PJZ was downregulated in PC tissues and plasma, which was related to advanced clinical characteristics and poor prognosis. tRF-19-Q1Q89PJZ overexpression inhibited the malignant activity of PC cells in vitro, while tRF-19-Q1Q89PJZ inhibition produced an opposite effect. The differentially expressed genes induced by tRF-19-Q1Q89PJZ overexpression were enriched in "pathways in cancer" and "glycolysis". Mechanistically, tRF-19-Q1Q89PJZ directly sponged hexokinase 1 (HK1) mRNA and inhibited its expression, thereby suppressing glycolysis in PC cells. HK1 restoration relieved the inhibitory effect of tRF-19-Q1Q89PJZ on glycolysis in PC cells and on their proliferation and mobility in vitro. tRF-19-Q1Q89PJZ upregulation inhibited PC cell proliferation and metastasis in vivo and suppressed HK1 expression in tumor tissues. Furthermore, tRF-19-Q1Q89PJZ expression was attenuated under hypoxia. Collectively, these findings indicate that tRF-19-Q1Q89PJZ suppresses the malignant activity of PC cells by regulating HK1-mediated glycolysis. Thus, tRF-19-Q1Q89PJZ may serve as a key target for PC therapy.


Assuntos
Hexoquinase , Neoplasias Pancreáticas , Humanos , Hexoquinase/genética , Hexoquinase/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Glicólise , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas
16.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37842778

RESUMO

As photoautotrophic organisms, plants produce an incredible spectrum of pigments, anti-herbivory compounds, structural materials and energic intermediates. These biosynthetic routes help plants grow, reproduce and mitigate stress. HEXOKINASE1 (HXK1), a metabolic enzyme and glucose sensor, catalyzes the phosphorylation of hexoses, a key introductory step for many of these pathways. However, previous studies have largely focused on the glucose sensing and signaling functions of HXK1, and the importance of the enzyme's catalytic function is only recently being connected to plant development. In this brief Spotlight, we describe the developmental significance of plant HXK1 and its role in plant metabolic pathways, specifically in glucose-6-phosphate production. Furthermore, we describe the emerging connections between metabolism and development and suggest that HXK1 signaling and catalytic activity regulate discrete areas of plant development.


Assuntos
Glucose-6-Fosfato , Hexoquinase , Desenvolvimento Vegetal , Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Fosforilação , Plantas/metabolismo
17.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834257

RESUMO

Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), may increase the risk of cancer development and a poor cancer prognosis. TAMs of the M2 phenotype, together with the intermittent hypoxic environment within the tumor, drive tumor aggressiveness. However, the mechanism of TAMs in IH remains unclear. In our study, IH induced the recruitment of macrophages, and IH-induced M2-like TAMs promoted glycolysis in laryngeal cancer cells through hexokinase 1. The hexokinase inhibitor 2-deoxy-D-glucose and HK1 shRNA were applied to verify this finding, confirming that M2-like TAMs enhanced glycolysis in laryngeal cancer cells through HK1 under intermittent hypoxic conditions. Comprehensive RNA-seq analysis disclosed a marked elevation in the expression levels of the transcription factor ZBTB10, while evaluation of a laryngeal cancer patient tissue microarray demonstrated a positive correlation between ZBTB10 and HK1 expression in laryngeal carcinoma. Knockdown of ZBTB10 decreased HK1 expression, and overexpression of ZBTB10 increased HK1 expression in both laryngeal cancer cells and 293T cells. The luciferase reporter assay and Chromatin immunoprecipitation assay confirmed that ZBTB10 directly bound to the promoter region of HK1 and regulated the transcriptional activity of HK1. Finally, the CLEC3B level of the M2 supernatant is significantly higher in the IH group and showed a protumor effect on Hep2 cells. As ZBTB10-mediated regulation of HK1 affects glycolysis in laryngeal cancer, our findings may provide new potential therapeutic targets for laryngeal cancer.


Assuntos
Glicólise , Hexoquinase , Neoplasias Laríngeas , Proteínas Repressoras , Apneia Obstrutiva do Sono , Humanos , Hexoquinase/genética , Hexoquinase/metabolismo , Hipóxia , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/metabolismo , Proteínas Repressoras/metabolismo , RNA Interferente Pequeno/metabolismo , Apneia Obstrutiva do Sono/complicações
18.
Sci Rep ; 13(1): 17066, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816759

RESUMO

In Saccharomyces cerevisiae, intracellular glucose levels impact glucose transport and regulate carbon metabolism via various glucose sensors. To investigate mechanisms of glucose sensing, it is essential to know the intracellular glucose concentrations. Measuring intracellular glucose concentrations, however, is challenging when cells are grown on glucose, as glucose in the water phase around cells or stuck to the cell surface can be carried over during cell sampling and in the following attributed to intracellular glucose, resulting in an overestimation of intracellular glucose concentrations. Using lactose as a carryover marker in the growth medium, we found that glucose carryover originates from both the water phase and from sticking to the cell surface. Using a hexokinase null strain to estimate the glucose carryover from the cell surface, we found that glucose stuck on the cell surface only contributes a minor fraction of the carryover. To correct the glucose carryover, we revisited L-glucose as a carryover marker. Here, we found that L-glucose slowly enters cells. Thus, we added L-glucose to yeast cultures growing on uniformly 13C-labeled D-glucose only shortly before sampling. Using GC-MS to distinguish between the two differently labeled sugars and subtracting the carryover effect, we determined the intracellular glucose concentrations among two yeast strains with distinct kinetics of glucose transport to be at 0.89 mM in the wild-type strain and around 0.24 mM in a mutant with compromised glucose uptake. Together, our study provides insight into the origin of the glucose carryover effect and suggests that L-glucose added to the culture shortly before sampling is a possible method that yet has limitations with regard to measurement accuracy.


Assuntos
Glucose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Transporte Biológico , Água/metabolismo , Meios de Cultura/metabolismo
19.
J Agric Food Chem ; 71(34): 12797-12806, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37592391

RESUMO

During the production of ethanol from lignocellulose-derived sugars, recombinant yeasts tend to utilize xylose and arabinose after glucose exhaustion. So far, many glucose-insensitive pentose transporters have been reported to counteract this phenomenon, but few studies have described intracellular factors. In this study, the combination of adaptive evolution, comparative genomics, and genetic complementation revealed that the hexokinase-deficient (Hxk0) arabinose-fermenting Saccharomyces cerevisiae requires the arabinose transporter variant Gal2-N376T and the mutations of guanine nucleotide exchange factor Cdc25 to overcome glucose restriction during arabinose assimilation. The results showed that the Hxk0 recombinant yeasts could lower the metabolic/physiological threshold of cell proliferation by downregulating the intracellular cAMP levels, resulting in smaller cells and increased arabinose assimilation under glucose restriction. In the medium containing 80 g/L glucose and 20 g/L arabinose, the evolved strain restoring the hexokinase activity completed fermentation at 22 h, compared to 24 h for the parental strain. Overall, the experimental results provide new insights into glucose repression of biorefinery yeasts.


Assuntos
Arabinose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Glucose , Hexoquinase/genética , Transdução de Sinais
20.
Pestic Biochem Physiol ; 194: 105499, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532357

RESUMO

Paclobutrazol is a plant growth inhibitor widely used in agricultural production. However, toxicology studies of paclobutrazol enantiomers towards aquatic organisms are limited. Herein, effects of paclobutrazol and its two enantiomers (2R, 3R; 2S, 3S) on glycolipid metabolism of zebrafish have been systemically explored at the concentration of 10 mg/L through biochemical analyses, LC-MS/MS, molecular dynamics simulation, and gene expression. In all treatments, the contents of glucose, citric acid and lactate significantly were increased while the glycogen and pyruvate contents were decreased, in which (2R, 3R)-paclobutrazol exhibited a greater effect than the (2S, 3S)-enantiomer (P < 0.05). Then, activities of hexokinase and lactate dehydrogenase in (2R, 3R)-paclobutrazol treatment were 0.74- and 1.18-fold higher than (2S, 3S)-enantiomer treatment, respectively (P < 0.001), and the results of molecular dynamics simulation revealed that the binding free energy of hexokinase 1 to (2R, 3R)-paclobutrazol was higher than that to the antipode. Moreover, lipids including triglycerides, total cholesterol, fatty acids, bile acids and glycerophospholipids in zebrafish were strikingly affected after paclobutrazol exposure. The (2R, 3R)-paclobutrazol-treated group showed the most obvious changes, indicating that it possessed much stronger disruption ability on the lipid metabolism of zebrafish. Furthermore, qRT-PCR analysis results revealed that (2R, 3R)-enantiomer significantly impacted expressions of glycolipid metabolism-related genes (hk1, g6pc, pck1, pk, aco, cebpa, cyp51, fasn and ppara) in zebrafish than (2S, 3S)-enantiomer (P < 0.05). Briefly, this study provides new evidences for the toxicity of paclobutrazol to aquatic organisms and the potential risk to human health at the chiral level.


Assuntos
Hexoquinase , Peixe-Zebra , Humanos , Animais , Estereoisomerismo , Cromatografia Líquida , Hexoquinase/genética , Espectrometria de Massas em Tandem , Glicolipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...